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Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS




Maximum Flow

+a graph-theoretic definition of flow networks



A flow network ¢ = (V,E):

IS a directed graph in which each edge (u,v) € E has a
nonnegative capacity c(u,v) = 0.

If (u,v) € E,
we assume that c(u,v) = 0.



In Flow networks

We distinguish : a source s and a sink t

we assume

every vertex lies on some path from the source to the sink
The graph is therefore connected, and |E| > | V| - 1.



Example of netwrok

Edmonton Saskatoon

Vancouver

Calgary Regina



flow

A flow in G is a real-valued function f : V X V — R that satisfies the
following three properties:

* Capacity constraint: Forallu,v € V, werequire f (u,v) < c(u,v).
* Skew symmetry: Forallu,v € V, werequire f (u,v) = —f (v,u).

* Flow conservation: Forallu € V — {s,t}, werequire },,cy f(u,v) =0
flow in equals flow out for vertex other than source and sink

The value of a flow f :
total flow out of the source (| f | = Xpev f (5, V))



A sample flow




maximum-flow problem

In the maximum-flow problem, we are given a flow network G with
source s and sink t, and we wish to find a flow of maximum value.



Networks with multiple sources and sinks

* This problem is no harder than ordinary maximum flow

* We can reduce the problem of determining a maximum flow in a
network with multiple sources and multiple sinks to an ordinary
maximum-flow problem

e add

a supersource s and add a directed edge (s, s;) with capacity c(s, s;)

= oo for each sourse s; (i = 1,2,...,m).

a supersink t and add a directed edge (t;, t) with capacity c(t;,t) = o
for each sink t; (i = 1,2,...,m).



A network with multiple sources and sinks
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Convert to a network with one source and one sink
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lemma

FED= 3, ¥ Flad

xeX yeY

Let G = (V. E) be a flow network, and let f be a flow in . Then the following
equalities hold:

1. Forall X € V,wehave f(X, X)=0.
2. Forall X,Y CV, , wehave f(X,Y)=—f(, X).

3. Forall X,Y,Z € V with XNY = @, we have the sums f(XUY,Z) =
X, 2)+ f(,Z)and f(Z,XVUY)= f(Z,X)+ f(Z,Y).
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The value of flow

Il = f(Gs,V)
= JEV, ¥)— J¥ —a. %)
= —f(V-s5,V)
= f(V,V —ys)
= f(V,0)+ f(V,V —=s—1)
= J1¥.i1)
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The Ford-Fulkerson method
+for solving the maximum-flow problem



Augmenting paths

* 3 path from the source s to the sink t along which we can send more
flow, and then augmenting the flow along this path
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General method
How increase the value of flow

* FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow fto O

2 while there exists an augmenting path p
3 do augment flow f along p

4 return f



Residual networks

* The amount of additional flow we can push from u to v before
exceeding the capacity c(u, v) is the residual capacity of (u, v), given
by

cr(u,v) = c(u,v) — f(u,v).

given a flow network and a flow, the residual network consists of edges
that can admit more flow
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* a flow is maximum if and only if its residual network contains no
augmenting path.



how a flow in a residual network relates to a flow in the
original flow network

Let G = (V. E) be a flow network with source s and sink 7, and let f be a flow
in G. Let G/ be the residual network of G induced by f, and let f’ be a flow
in G . Then the flow sum f 4 f’ defined by equation (26.4) is a flow in G with
value [ £+ f'| = [fI+ | f'].
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residual capacity of an augmenting path

* the maximum amount by which we can increase the flow on each
edge in an augmenting path p

ce(p) =min{cs(u,v): (u,v)1son p}



residual capacity of an augmenting path can add to
the value of flow

Let G = (V. E) be a flow network, let f be a flow in G, and let p be an augmenting
path in G s. Define a function f, : V. x V. — R by
cr(p) if (u,v)ison p,

fo(u,v)y = § —cp(p) if(v,u)isonp, (26.6)
0 otherwise .

Then, f, is aflow in G s with value | f,| = c¢(p) > 0.

Corollary

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an aug-
menting path in G ;. Let f, be defined as in equation (26.6). Define a func-
tion f':V xV > Rby f" = f+ f,. Then f’ is a flow in G with value

1 I1=1f1+1fpl > |fl.
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Definition of cut

* Acut (S, T) of flow network G = (V, E) is a partition of Vinto Sand T =
V-Ssuchthats€SandteT.

* If fis a flow, then the net flow across the cut (S, T) is defined to be
fs, 7).
* The capacity of the cut (S, T) is c(S, T).

* A minimum cut of a network is a cut whose capacity is minimum over
all cuts of the network.



A cut with
the net flow f(S, T ) =19, and
the capacity c(S, T ) = 26.




* The value of any flow fin a flow network G is bounded from above by
the capacity of any cut of G.

(can proved by definition of flow and cut)



Max-flow min-cut theorem

If £ 1s a flow in a flow network G = (V, E) with source s and sink 7, then the
following conditions are equivalent:

I. f 1samaximum flow in G.

2. The residual network G ; contains no augmenting paths.

3. |fl=¢c(S,T)forsomecut(S,T)of G.
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basic Ford-Fulkerson algorithm
expands on the FORD-FULKERSONMETHOD

FORD-FULKERSON(G., s. 1)

for each edge (u, v) € E|G]
do flu,v] <0
flv,u] < 0
while there exists a path p from s to 7 1n the residual network G
do cs(p) < min{cs(u, v) : (u,v)isin p}
for each edge (u, v) In p
do flu,v] < flu,v]+cr(p)
flv.u]l < —flu, v]

0 J NN pH WK -
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Time complexity

* The running time of FORD-FULKERSON depends on how the
augmenting path p in line 4 is determined.

* where is the maximum flow found by the algorithm:
a straightforward implementation runs in time O(E |f*|)

* Prove Hint:

the flow value increases by at least one unit in each iteration

29



O(E |f*|) can be bad!

e continue, choosing the augmenting paths - u = v = tinthe
odd-numbered iterations and the augmenting paths — v - u
— t in the even-numbered iterations.
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The Edmonds-Karp algorithm

* The bound on FORD-FULKERSON can be improved if we implement
the computation of the augmenting path p in line 4 with a breadth-
first search (each edge has unit distance (weight))

the augmenting path is a shortest path from s to t in the residual
network
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the running time of the Edmonds-Karp
algorithm is O(V E#)

Lemma 26.8

[f the Edmonds-Karp algorithm is run on a flow network G = (V, E') with source s
and sink 7, then for all vertices v € V' — {s, r}, the shortest-path distance 67 (s, v)
in the residual network G s increases monotonically with each flow augmentation.

Theorem 26.9

If the Edmonds-Karp algorithm is run on a flow network G = (V, E)) with source s

and sink 7, then the total number of flow augmentations performed by the algorithm
is O(VE).
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Show the execution of the Edmonds-Karp
algorithm on the flow network

Edmonton Saskatoon

> -
Vancouver <0  Winnipeg
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Sample Problem

Suppose you are given a flow network G with integer edge capacities and
an integer maximum flow f* in G. Describe algorithms for the following
operations:

(a) INcREMENT(e): Increase the capacity of edge e by 1 and update the
maximum flow.

(b) DEcrREMENT(e): Decrease the capacity of edge e by 1 and update the
maximum flow.

Both algorithms should modify f* so that it is still a maximum flow, more
quickly than recomputing a maximum flow from scratch.
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